Invariant Measures and Maximal L2 Regularity for Nonautonomous Ornstein-uhlenbeck Equations

نویسندگان

  • MATTHIAS GEISSERT
  • ALESSANDRA LUNARDI
چکیده

We characterize the domain of the realizations of the linear parabolic operator G defined by (1.4) in L spaces with respect to a suitable measure, that is invariant for the associated evolution semigroup. As a byproduct, we obtain optimal L 2 regularity results for evolution equations with time-depending Ornstein-Uhlenbeck operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity of invariant measures for a class of perturbed Ornstein{Uhlenbeck operators

In the framework of 5] we prove regularity of invariant measures for a class of Ornstein{Uhlenbeck operators perturbed by a drift which is not necessarily bounded or Lipschitz continuous. Regularity here means that is absolutely continuous with respect to the Gaussian invariant measure of the unperturbed operator with the square root of the Radon{Nikodym density in the corresponding Sobolev spa...

متن کامل

Asymptotic Behavior and Hypercontractivity in Nonautonomous Ornstein-uhlenbeck Equations

In this paper we investigate a class of nonautonomous linear parabolic problems with time-depending Ornstein-Uhlenbeck operators. We study the asymptotic behavior of the associated evolution operator and evolution semigroup in the periodic and non-periodic situation. Moreover, we show that the associated evolution operator is hypercontractive.

متن کامل

Uniqueness results for the generators of the two - dimensional Euler and Navier – Stokes flows . The case of Gaussian invariant measures

The Euler and Navier–Stokes equations for an incompressible fluid in two dimensions with periodic boundary conditions are considered. Concerning the Euler equation, previous works analyzed the associated (first order) Liouville operator L as a symmetric linear operator in a Hilbert space L2( ) with respect to a natural invariant Gaussian measure (given by the enstrophy), with domain the subspac...

متن کامل

Ornstein-Uhlenbeck and renormalization semigroups

The Ornstein-Uhlenbeck semigroup combines Gaussian diffusion with the flow of a linear vector field. In infinite dimensional settings there can be non-Gaussian invariant measures. This gives a context for one version of the renormalization group. The adjoint of the OrnsteinUhlenbeck semigroup with respect to an invariant measure need not be an Ornstein-Uhlenbeck semigroup. This adjoint is the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008